
27 Example: Supermarket
This chapter presents a single example program. The program is a simulation,
slightly more elaborate than that in the AirController/Aircraft example in Chapter
20. The program makes limited use of inheritance. The use of inheritance here is
largely to simplify some aspects of the design; there isn't much sharing of code
among interrelated classes.

The number of objects present at run time is somewhat larger in this example
than earlier examples. At any one stage of the simulation there may be as many as
two hundred to three hundred objects. The number of objects created and
destroyed during a run will be something in the range one thousand to three
thousand. Naturally, since the program will be creating and working with large
numbers of objects, some of the standard collection classes appear. Although there
are hundreds of objects most are instances of the same class; the program uses
fewer than ten different concrete classes.

The program makes use of a class that came with the very first class library
released with C++. This "histogram" class (based on the version in the original
"tasks" library) collects data that are to be displayed as a histogram and, when data
collection is completed, produces a printout.

27

27.1 BACKGROUND AND PROGRAM SPECIFICATION

Helping the supermarket's manager

The manager of a large supermarket wants to explore possible policies regarding
the number of checkout lanes that are necessary to provide a satisfactory service to
customers.

The number of customers, and the volume of their purchases, varies quite
markedly at different times of day and the number of open checkout lines should be
adjusted to match the demand. Customers will switch to rival stores if they find
that they have to queue too long in this supermarket so, at times, it may be
necessary to have a large number of checkouts open. However, the manager must
also try to minimize idle time at checkouts; there is no point keeping checkouts
open if there are no customers to serve.

952 Supermarket example

The manager is proposing a policy in which supermarket staff will be assigned
to "general duties". Staff may be restocking shelves, cleaning, recovering trolleys
from parking lots, or operating checkouts. Staff can be switched "immediately"
between different roles. The manager (or some deputy) will make regular checks
on activity in the shop and, if appropriate, may assign more staff to open extra
checkout lanes or may close idle checkouts so freeing the operators to perform
other duties.

The manager is proposing some "rules of thumb" (heuristics) for choosing when
to open or close checkouts and for the frequency of scheduling such decisions.
However, before trying these rules in the shop, the manager wishes to try them out
in simulations.

The rules are "parameterized". For example, one rule limits use of "fast
checkout lanes" to customers who are purchasing less than some specified
maximum number of items. Naturally, this "fast checkout limit" is a parameter that
can be adjusted. The manager wants to run many simulations with different
settings for the various parameters. In this way, it is hoped that it will be possible
to identify which parameters are more critical and to establish some practical
operating rules.

The program, that is to be developed for the manager, is to start by accepting a
set of inputs that define a particular set of control parameters for the manager's
rules. It is then to simulate one day of operation of the supermarket subject to these
rules. The simulation will involve some "randomized" customer traffic. During the
simulation, various statistics will be gathered that characterize the distribution of
queuing times for the customers and the total amount of open-time and idle time for
the checkouts. At the end of a simulation run, these data are to be displayed. The
manager may then wish to initiate another "randomized" run, or may wish to repeat
the run using the same "randomized" pattern for customer traffic but with a
changed set of parameters for the rules.

Some details:

The supermarket opens its doors at 8 a.m.. Once opened, the doors can be pictured
as delivering another batch of frantic shoppers every minute. This continues until
the manager closes the doors, which will happen at the first check time after the
supermarket's nominal closing time of 7 p.m.. All customers then in the
supermarket are allowed to complete their shopping, and must queue to pay for
their purchases before leaving. During this closing period, the manager checks the
state of the shop every 5 minutes and closes any checkouts that have become idle.
The supermarket finally closes when all customers have been served. The closing
time should be displayed along with the statistics that have been gathered to
characterize the simulation run.

The supermarket has a maximum of 40 checkout lanes, but the maximum
number to be used in any run of the simulation is one of the parameters that the
manager wishes to vary. The checkouts may be "fast" or "standard" (as noted
earlier, another of the parameters for a simulation run defines the limit on purchases
permitted to users of fast checkout lanes). The supermarket always has at least one

Rules for running the
supermarket

Rule parameters

Program to simulate
working for different

sets of parameters

Time period
simulated

Checkout numbers

Supermarket example: Introduction 953

standard checkout open; the manager wants the option of specifying a minimum of
1..3. There is no requirement that a "fast" checkout be always open, though again
the manager wants to be able to specify a minimum number of fast checkouts (in
the range 0..3). One of the other rules proposed by the manager specifies when to
open fast checkouts if there are none already open.

Checkouts process a current customer, and have a "first-come-first-served"
queue of customers attached. A checkout processes ten items per minute (this is
not one of the parameters that the manager normally wishes to vary, but obviously
the processing rate, as defined in the program, should be easy to change.) The
minimum processing time at a checkout is one minute (customers have to find their
change and dispute the bill even if they buy only one item). Once a checkout
finishes processing a customer, that customer leaves the shop (and disappears from
the simulation). Checkout operators record any time period that they are idle and,
when reassigned to other duties, report their idle time to a supervisor who
accumulates the total idle time.

Customers entering the supermarket have some planned number of purchases
(see below for how this is determined). Customers have to wander the aisles
finding the items that they require before they can join a queue at a checkout. It is a
big store and the minimum time between entry and joining a checkout queue would
be two minutes for a customer who doesn't purchase anything. Most customers
spend a reasonable amount of time doing their shopping before they get to join a
queue at a checkout. This shopping time is determined by the number of items that
must be purchased and the customer's "shopping rate". Shopping rates vary; for
these simulations the shopping rates should be distributed in the range 1..5 items
per minute (again, this range is not a parameter that the manager wishes to change
on different runs of the simulation, but the program should define the range in a
way that it is easy to change if necessary).

Once they have completed their shopping, customers must choose the checkout
where they wish to queue. You can divide customers into "fast" and "standard"
categories. "Fast" customers are those who are purchasing a number of items less
than or equal to the supermarket's "fast checkout limit" (together with that 1% of
other customers who don't wish to obey such constraints). When choosing a
checkout, a "fast customer" will, in order of preference, pick: a) an idle "fast"
checkout, b) an idle "standard" checkout, or c) the checkout ("fast" or "standard")
with the minimum current workload. Similarly, "standard customers" will pick a)
an idle "standard" checkout, or b) the "standard" checkout with the minimum
current workload.

The workload of a checkout can be taken as the sum of all the items in the
trolleys of customers already in the queue at that checkout plus the number of items
still remaining to be scanned for the current customer.

The manager is proposing a scheme whereby checks are made at regular
intervals. This interval is one of the parameters for a simulation run; it should be
something in the range 5..60 minutes.

When running a check on the state of the supermarket, the manager may need to
close idle checkouts, or to open checkouts to meet the minimum requirements for
fast and standard checkouts, or to open extra checkouts to avoid excessively long
queues at checkouts. The suggested rules are:

Queues at checkouts

Customers

Choosing where to
queue

Workloads at
checkouts

Scheduling changes
to checkouts

954 Supermarket example

• Checkout closing rule:
If the number of shoppers in the aisles has decreased since the last check,

then all idle checkouts should be closed (apart from those that need to be left
open to meet minimum requirements).

• Minimum checkouts rules:
Open fast and standard checkouts as needed to make up the specified

minimum requirements.
If the total number of customers in the supermarket (shoppers and queuers)

exceeds 20, there must be at least one fast checkout open.

• Extra checkouts rules:

If either the number of customers queuing, or the number of customers
shopping has increased since the last check, then the following rules for
opening extra checkouts should be applied:

a) If the average queue length at fast checkouts exceeds a minimum
(specified as an input for the simulation run), then one additional fast
checkout should be opened (but not if this would cause the total number of
checkouts currently open to exceed the overall limit).

b) A number of additional standard checkouts may have to be opened
(subject to limits on the overall number of checkouts allowed to be open).
Checkouts should be opened until the average queuing time at standard
checkouts falls below a maximum limit entered as an input parameter for
the simulation. (The queuing times can be estimated from the workloads at
the checkouts and the known processing rate of checkouts.)

In the real world, when a new checkout opens, customers at the tails of existing
queues move to the queue forming at the newly opened checkout if this would
result in their being served more quickly. For simplicity, the simulation will omit
this detail.

The rate of arrival of customers is far from uniform and cannot be simulated by
random drawing from a uniform distribution. Instead, it must be "scripted". The
pattern of arrivals averaged for a number of days serves as the basis for this script.
Typically, there is fairly brisk traffic just after opening with people purchasing
items while on their way to work. After a lull traffic builds to a peak around 10.30
a.m. and then slackens off. There is another brisk period around lunch time, a quiet
afternoon, and a final busy period between 5.30 p.m. and 6.30 p.m.. The averaging
of several days records has already been done; the results are in a file in the form of
a definition of an initialized array Arrivals[]:

static int Arrivals[] = {
// Arrivals at each 1 minute interval starting 8am
 12, 6, 2, 0, 0, 1, 2, 2, 3, 4, 3, 0, 2, 0, 0,
 ...
};

Rules for
opening/closing

checkouts

Customer traffic

Supermarket example: Introduction 955

This has entries giving the average number of people entering in each one minute
time interval. Thus, in the example, 12 customers entered between 8.00 and 8.01
am etc. These values are to be used to provide "randomized" rates of customer
arrival. If for time period i, Arrivals[i] is n, then make the number of customers
entering in that period a random number in the range 0..2n-1.

Similarly, the number of purchases made by customers is far from uniform. In
fact, the distribution is pretty close to exponential. Most customers buy relatively
few items, but a few individuals do end up filling several trolleys with three
hundred or more items. The number of items purchased by customers can be
approximated by taking a random number from an exponential distribution with a
given mean value.

It has been noted that the mean values for these distributions are time dependent.
Early customers, and those buying items for their lunch, require relatively few
items (<10); so at these times the means for the exponential distributions are low.
The customers shopping around 10.30 a.m., and those shopping between 5.30 and
6.30 p.m., are typically purchasing the family groceries for a week and so the mean
numbers of items at these times are high (100+).

Again, these patterns are accommodated through scripting. The file with the
array Arrivals[] has a commensurate array Purchases[]:

static int Purchases[] = {
// Average number purchases of customer
 4, 3, 4, 5, 3, 5, 7, 6, 5, 4, 3, 5, 2, 5, 4,
…
};

The entries in this array are the mean values for the number of purchases made by
those customers entering in a particular one minute period. The number of
purchases made by an individual customer should be generated as a random
number taken from an exponential distribution with the given mean.

The manager wants the program to provide an informative statistical summary at
the end of each run. This summary should include:

• the shop's closing time;
• the number of customers served;
• a histogram showing the number of items purchased by customers;
• histograms summarizing the shopping, queuing and total times spent by

customers;
• details of checkout operations such as total operating and idle times of

checkouts

There should also be a mechanism for displaying the state of the supermarket at
each of the check times.

Specification

Implement the Supermarket program:

Purchase amounts

Reports for the boss

956 Supermarket example

1 The program will start by prompting for the input parameters:
• frequency of floor manager checks;
• maximum number of checkouts;
• minimum number of fast and standard checkouts;
• purchase limit for use of fast checkout;
• length of queues at fast checkout necessary that, if exceeded, will cause

the manager to open an extra fast checkout;
• queuing time at standard checkout that, if exceeded, will cause the

manager to open an extra fast checkout;

2 The program is then to simulate activities in the shop from 8.00 a.m. until final
closing time.
At intervals corresponding to the floor manager's checks, the program is to
print a display of the state of the shop. This should include summaries of the
total number of customers currently in the shop, those in queues, and details of
the checkouts. Active checkouts should indicate their queue lengths. The
number of idle checkouts should be stated.
Details of any changes to the number of open checkouts should also be printed.

3 When all customers have left, the final closing time should be printed along
with the histograms of the statistics acquired. The histograms should include
those showing number of purchases, total time spent in the shop, and queuing
times. Details of total and idle time of checkouts should also be printed.

27.2 DESIGN

27.2.1 Design preliminaries

The simulation mechanism

The simulation mechanism is similar but not identical to that used in the
AirController/Aircraft example. The core of the simulation is again going to be a
loop. Each cycle of this loop will represent one (or more) minute(s) of simulated
time. Things happen almost every minute (remember, another bunch of frantic
customers comes through the door). Most activities will run for multiple minutes
(two minute minimum shopping time, one minute minimum checkout time etc).

Each cycle of the simulation loop should allow any object that needs to perform
some processing to "run". This is again similar to the AirController/Aircraft
example where all the Aircraft got a chance to Move() and update their
positions. The Supermarket program could arrange to tell all objects to "run" for
one minute (shoppers complete more of their purchasing, checkouts scan a few
more items). However, as there are now going to be hundreds of objects it is better
to use a slightly more efficient mechanism whereby objects suspend themselves for
a period of time and only those that really need to run do so in any one cycle.

There is a standard approach for simulations that makes use of a priority queue.
Objects get put in this queue using "priorities" that represent the time at which they
are going to be ready to switch to a new task (all times can be defined as integer
values – minutes after opening time). For example, a customer who starts doing 15

Loop representing
passage of time

On each cycle do …

Priority queue used
in simulation

Design preliminaries 957

minutes worth of shopping at 8.30 a.m. can be inserted into this queue with priority
45 (i.e. ready at 8.45 a.m.), a customer starting at the same time but with only 3
minutes worth of shopping will get entered with priority 33 (i.e. ready at 8.33).

The simulation loop doesn't have to advance time by single units. Instead, it
pulls an item from the front of the priority queue. Simulated time can then be
advanced to the time at which this next event is supposed to happen. So, if the
front item in the queue is supposed to occur at 8.33 a.m., the simulated time is
advanced to 8.33 a.m.. In this example, there will tend to be activities scheduled
for every minute; but you often have examples where there are quiet times where
nothing happens for a period. The priority queue mechanism lets a simulation jump
these quiet periods.

When items are taken from the queue, they are given a chance to "run". Now
"run" will typically mean finishing one operation and starting another, though for
some objects it will just mean doing the same thing another time. This mechanism
for running a simulation is efficient because "run" functions are only called when it
is time for something important to happen. Thus, there no need to disturb every
one of the hundred customers still actively shopping to ask if they are ready go to a
checkout; instead, the customers are scheduled to be at the front of the priority
queue when they are ready to move to checkouts.

Usually, the result of an object's "run" function will be some indication that the
it wants to be put back in the priority queue at some later time (larger priority
number), or that it needs to be transferred to some other queue, or that it is finished
and can be removed from the simulation.

There will be something in the program that handles this main loop. But before
we get too deep into those details we need to identify the objects. What are these
things that get to run, and what do they want to do when they have a chance to run?

The objects

So, what are the objects? What they own? What they do?
Some are obvious. There are going to be "Customer" objects and "Checkout"

objects. There will also be "Queue" objects, and "Histogram" objects. Now while
all these will be important it should be clear that they aren't the ones that really
define the overall working of the simulation.

Customer objects are going to be pretty passive. They will just hang around
"shopping" until they eventually chose to move to a checkout queue. They will
then hang around in a queue until they get "processed" by a Checkout after which
they will report their shopping time, queuing time, etc and disappear. But
something has got to create them. Something has to ask them for their statistics
before they leave. Something has to keep count of them so that these data are
available when the rules for opening/closing checkouts are used.

Checkout objects might be a little more active. They will add customers to their
queues (if customers were to be permitted to switch queues, the checkouts would
have to allow customers to be removed from the tails of their queues). They pull
customers off their queues for processing. They report how busy they are. But

Obvious objects

Customers

Checkouts

958 Supermarket example

they still don't organize much. There has to be some other thing that keeps track of
the currently active checkouts.

The other objects, in this example the more important control objects, have still
to be identified.

An approach sometimes suggested is to proceed by underlining the nouns in the
problem description and program specification. After all, nouns represent objects.
You will get a lengthy and rather strange list: supermarket, door, minute, time,
shopping, purchases, manger, employee, statistics, aisles, …. You drop those that
you feel confident don't add much; so minute, shopping, aisles can all go
immediately. The remaining nouns are considered in more detail.

How about purchases? Not an object. The only thing we need to know about a
customer's purchases is the number. Purchases can be a data member of the
Customer class. The class had better provide an access function to let other objects
get this number when needed.

Time? The simulation has to represent time. But basically it is just an integer
counter (minutes after opening time or maybe minutes after midnight). Something
owns the system's timer; something updates it (by advancing this timer when items
are taken from the priority queue). Many objects will need access to the time value.
But the time is not an object.

Manager? This seems a better candidate. Something needs to hold the
parameters used in the checkout opening/closing rules. Something needs to execute
the code embodying those rules. There would only be one instance of this class.
Despite that, it seems plausible. It offers a place to group some related data and
behaviours.

Employees? No. The simulation doesn't really need to represent them. Their
activities when they are not operating checkouts are irrelevant to the simulation.
There is no need to simulate both employee and checkout. In the simulation the
checkouts embody all the intelligence needed to perform their work.

You can do design by underlining nouns, and then choosing behaviours for the
objects that these nouns represent. It doesn't always work well. Often it results in
over faithfully modelling the real world. You tend to end up with "Employee"
objects and Checkout objects, and a scheme for assigning "Employee" objects to
run Checkout objects. This just adds unnecessary complication to the program.

Use of scenarios is an alternative way to find objects. Scenarios, and the
patterns of object interactions that they reveal, were used in Chapter 22. There we
already had a good idea as to the classes and needed just to flesh out our
understanding of their behaviours and interactions. However, we can use scenarios
at an earlier stage where we are still trying to identify the classes. Sometimes, a
scenario will have a "something" object that asks a Customer object to provide
some data. We can try and identify these "somethings" as we go along.

The example programs in Chapter 22 were driven by user entered commands.
So, we could proceed by working out "What happens when the user requests action
X?" and following the interactions between the objects that were involved in
satisfying the users request.

This program isn't command driven. It grabs some initial input, then runs itself.
So we can't start by following the effect of each command.

Where else might we start?

Finding the objects

Underline the nouns?

Purchases?

Time?

Manager?

Employee?

Avoid over faithful
models of real world

Alternative approach
for finding objects:
Scenarios

Starting points for
scenarios

Design preliminaries 959

The creation and destruction of objects are important events in any program.
We have already identified the need for Customer objects and Checkout objects.
So, a possible starting point is looking at how these get created and destroyed.

Something has to create Customers, tell them how much they want to buy, and
then pass them to some other something that looks after them until they leave the
shop. Note, we have already found the need for two (different kinds of)
somethings. The first something knows about those tables of arrivals and purchase
amounts. The second something owns data like a list of current customers.

When Customer objects leave, they have to report their statistics. How? To
what? A Customer object has several pieces of data to report – its queuing time, its
number of purchases, its shopping time, etc. These data are used to update different
Histogram objects. It would be very inconvenient if every Customer needed to
know about each of the different Histogram objects (too many pointers). Instead,
the gathering of statistics would be better handled by some object that knew about
Customer objects and also knew about (possibly owned?) the different Histogram
objects.

Checkout objects also get created and destroyed. The "Manager" chooses when
creation and destruction occurs and may do the operations or may ask some other
object to do the actual creation (destruction). Something has to keep track of the
checkout objects. When a checkout is destroyed, it has to report its idle time to
something.

Scenarios relating to these creation and destruction steps of known objects will
help identify other objects that are needed. Subsequently, we can examine
scenarios related to the main simulation loop. "Active objects" are going to get
taken from the front of the priority queue and told to "run". We will have to see
what happens when objects of different types "run".

Scenarios for the
creation and
destruction of objects

27.2.2 Scenarios: identifying objects, their classes, their
responsibilities, their data

Creation and destruction scenarios

Creating customers

A supermarket without customers is uninteresting, so we might as well start by
looking at how Customer objects come into the system.

Figure 27.1 provides a first idea. We could have a "Door" object that creates the
Customers, providing them with the information they need (like their number of
purchases). The Customer objects will have to complete any initialization (e.g.
choose a rate at which to shop), work out how long their shopping will take, and
then they will have to add themselves to some collection maintained by a "Shop"
object. To do that, they will have to be given a pointer to the shop object
(customers need to know which shop they are in). The Door object can provide this
pointer (so long as it knows which shop it is attached to).

960 Supermarket example

Door
object

Customer
objects

Shop
object

call
constructor
passing info.
like pointer
to Shop

loop in
Run()

Run()

+

?
add to

simulation

AddCustomer()

Figure 27.1 Scenario for creation of Customer objects.

Customers are supposed to come into the shop every minute. The main
simulation loop is going to get "active objects" (like the Door) to "run" each minute
(simulated time). Consequently, the activities shown in Figure 27.1 represent the
"run" behaviour of class Door. It can use the table of arrival rates and average
purchases to choose how many Customer objects to create on each call to its Run()
function.

This initial rough scenario for creating a Customer object cannot clarify exactly
what the Shop object must do when it "adds a customer". Obviously it could have a
list of some form that holds all customers; but it might keep separate lists of those
shopping and those queuing. Some activity by the customer (switch from shopping
to queuing) has also got to be scheduled into the simulation. The Shop object might
be able to organize getting the customer into the simulation's priority queue.

Results:

We appear to need:

• a Door object.
It uses (owns?) those arrays (with details of when customers arrive and how
much they want to purchase), and a pointer to a Shop object.
In its Run() member function, called from the main simulation loop, it creates
customers.

• Constructor
The constructor function gets given a pointer to a Shop, and a value for the
number of purchases. The function is to pick an actual number of purchases
(exponentially distributed with given number as mean, minimum of 1 item),
and select a shopping rate. The Customer better record starting time so that
later it is possible to calculate things like total time spent in the shop. (How
does it get the current time? Unknown, maybe the time is a global, or maybe

Scenarios 961

the Customer object could ask the Shop. Decide later.) These data get stored
in private data members.

Constructor should invoke "AddCustomer" member function of the Shop
object.

• a Shop object.
This keeps track of all customers, and gets them involved in the main
simulation.

Removing customers from simulation

Customers leave the simulation when they finish being processed by a Checkout.
The Checkout object would be executing its Run() member function when it gets
to finish with a current customer; it can probably just delete the Customer object.
We can arrange that the destructor function for class Customer notify the Shop
object. The Shop object can update its count of customers present. Somehow, the
Customer has to report the total time it spent in the shop. Probably the report
should be made to the Shop object; it can log these times and use the data to update
the Histogram objects that will be used to display the data.

Figure 27.2 illustrates the interactions that appear to be needed.

Results:

Responsibilities of Shop object becoming clearer. It is going to gather the statistics
needed by the various Histogram s. It probably owns these Histogram objects.

Checkout
object

Customer
object

Shop
object

Run()

delete

CustomerLeaves()

~Customer() LogTotalTime()

Figure 27.2 Scenario for deletion of Customer objects.

962 Supermarket example

Creating and Destroying Checkout objects

Customer objects will be getting created and deleted every minute. Changes to the
Checkouts are less common. Checkout objects are only added or removed when
the floor manager is performing one of his/her regular checks (the problem
specification suggested that these checks would be at intervals of between 5 and 60
minutes). Checkouts are added/removed in accord with the rules given earlier.

There seems to be a definite roll for a "Manager" object. It will get to "run" at
regular intervals. Its "run" function will apply the rules for adding and removing
checkouts.

The Manager object will need to be able to get at various data owned by the
Shop object, like the number of customers present. Maybe class Manager should be
a friend of class Shop, otherwise class Shop is going to have to provide a large set
of access functions for use by the Manager object.

Figure 27.3 illustrates ideas for scenarios involving the creation and deletion of
checkout objects. These operations will occur in (some function called) from
Manager::Run(). The overall processing in Manager::Run() will start with
some interactions between the Manager object and the Shop object. These will give
the Manager the information needed to run the rules for opening/closing checkouts.

Manager
object

Shop
object

Checkout
objects

Run() Requests
for queue lengths,
details of number

of shoppers

CreateExtra
Checkouts()

+

OpenCheckout()

Run() Requests
for queue lengths,
details of number

of shoppers

CloseIdle
Checkouts()

LogIdleTime()

delete
destructor

constructor

1

2

Figure 27.3 Scenarios for creation and deletion of Checkout objects.

The Shop might be involved in further interactions with existing checkouts to
find their queue lengths etc; we can ignore these secondary interactions until later.

Scenarios 963

Pane 1 of Figure 27.3 illustrates an idea as to events when the shop is getting
busier. The Manager will create additional checkouts. As part of their
"constructor" operations, these checkout objects can register with the Shop (it will
need to put them into lists and may have to perform other operations).

Pane 2 of Figure 27.3 shows the other case where there are idle checkouts that
should be deleted. The Manager object will have to get access to a list of idle
checkouts that would presumably be kept by the Shop object. It could then remove
one or more of these, deleting the Checkout objects once they had been removed.

The destructor of the Checkout object would have to pass information to the
Shop object so that it could maintain details of idle times and so forth.

Note the use of destructors in this example, and the preceding case involving
Customer objects. Normally, we've used destructors only for tidying up operations.
But sometimes, as here, a destructor should involve sending a notification to
another object.

Other acts of creation and destruction

The other objects appear all to be long lived. The simulation could probably start
with the main() function creating the principal object which appears to be the
Shop:

int main()
{

// Some stuff to initialize random number generator

Shop aSuperMart;
aSuperMart.Setup();
aSuperMart.Run();
return 0;

}

The Shop object could create the Door, and the Manager objects, either as part of
the work of its constructor or as some separate Setup() step. Things like the
PriorityQueue and Histogram objects could be ordinary data members of class
Shop and so would not need separate creation steps.

The Shop, Door, and Manager objects can remain in existence for the duration of
the program.

Scenarios related to the main Run() loop in the simulation

The main Shop::Run() loop working with the priority queue will have to be
something like the following:

while Priority Queue is not empty
remove first thing from priority queue
move time forward to time at which this thing is

supposed to run

Expanded role for
destructors

964 Supermarket example

let the thing run

check status of thing
if terminated

delete it
if idle

ignore it
if running

renter into priority queue

report final statistics

The priority queue contains anything that wants a chance to "run", and so it
includes the Door object, a Manager object, some Checkout objects and some
Customer objects. But as far as this part of the simulation is concerned, these are
all just objects that can "run", can specify their "ready time", and can be asked their
status (terminated, idle, running).

A simulation using the priority queue mechanism depends on our being able to
treat the different objects in the priority queue as if they were similar. Thus here
we are required to employ a class hierarchy. We need a general abstraction: class
"Activity".

Class Activity is an abstraction that describes an Activity object as
something that can:

• Run()
An Activity's Run() function will complete work on a current task and
select the next task. This will be a pure virtual function. Specialized
subclasses of class Activity define their own task agendas.

• Status()
An Activity can report its status (value will be an enumerated type). Its
status is either "running" (the Activity is in, or should be added to, the main
priority queue used by the simulation), or "idle" (the Activity is on some
"idle" list, some other object may invoke a specialized member function that
change the Activity 's status), or "terminated" (the main simulation loop
should get rid of those Activity objects that report they have terminated).

• Ready_At()
An Activity can report when it is next going to be ready; the result will be in
simulation time units (in this example, these units will be minute times during
the day).

The current hierarchy of Activity classes is illustrated in Figure 27.4.
The scenarios shown in Figures 27.1 and 27.3 related to Run() member

functions of two of the classes. The other activities triggered from this main loop
will involve actions by Customer objects and Checkout objects.

A Customer object should be initially scheduled so that it "runs" when it
completes its shopping phase. At this time, it should choose the Checkout where it
wants to queue.

Probably, a Customer object should ask the Shop to place it on the shortest
suitable queue; see Figure 27.5. This would avoid having the Customer objects

Need for a class
hierarchy

class Activity

Scenarios 965

interacting directly with the Checkout objects. Once it is in a Checkout queue, the
Customer object can remove itself from the main simulation (it has nothing more to
do); to achieve this, it just has to set its state to "idle".

Activity

Door

Manager Checkout

Customer

owns:
 "state" data member;
does:
 Run(), ReadyAt(), Status()

owns:
 ? info. for creating customers
does:
 Run()
 create some customers,
 then reschedule

owns:
 ? info. for rules for running
 checkouts
does:
 Run()
 examine state of shop, maybe
 open or close checkouts;
 then reschedule
 …

owns:
 ?number of items to purchase,
 starting time
does:
 Run()
 pick checkout, join queue
 change state to idle

owns:
? queue of customers, work time,
 idle time
does:
 Run()
 finish current customer (and
 delete), if no customers in
 queue notify shop that now
 idle and change state
 else start serving next,
 work out next ready time
 reschedule

Figure 27.4 A hierarchy of "Activity" classes.

Checkout objects are scheduled to "run" at the time they finish processing a
current customer. At this time they can delete the customer (scenario in Figure
27.2). They then have to check their queues. If a Checkout's queue is empty, it
should set its state to "idle" and inform the Shop (this needs to keep track of idle
checkouts); once it is idle, the Checkout drops out of the simulation but can be
reinserted if the Shop object gives the Checkout more work and gets it to
reschedule itself. A Checkout should note the time that it becomes idle so that it
can report its idle time. Of course, Checkouts will usually find other Customers
queuing; the first Customer should be removed from the queue for processing. The
Checkout can calculate its next "ready at" time from the amount of the Customer's
purchases and will continue in the "running" state.

Checkout objects and Customer objects drop out of the simulation loop by
becoming "idle"; some other interaction causes them to be deleted. The simulation
continues until the queue is empty. The Customer and Checkout objects get
removed as they become idle, but what about the Door and the Manager.

966 Supermarket example

Customer
object

Checkout
objects

Shop
object

loop

Run()

QueueMe()

WorkLoad()

AddCustomer()

Figure 27.5 Interactions with Customer::Run().

These two normally reschedule themselves as running; the Door object setting
its next "ready at" time for one minute later, the Manager selecting a time based on
the frequency of checks. The Manager is responsible for getting the Shop to close
its Door sometime after 7 p.m.. This is probably the basis for getting the Door
removed from the simulation. If it has been "closed", instead of rescheduling itself
the Door should report that it has "terminated". The simulation loop will then get
rid of it.

Similarly, the Manager object should "terminate" once all its work has been
done. This will be when the door has been closed and the last customer has been
finished. The termination of the Manager will leave the priority queue empty and
the simulation will stop.

When the main simulation loop ends, the Shop can printout the statistics that it
has gathered.

27.2.3 Filling out the definitions of the classes for a
partial implementation

The analysis of the problem is still incomplete. We haven't yet really covered how
the statistics are gathered or how the histograms are displayed; nor have the rules
for opening and closing checkouts been considered in any detail.

Despite that, it would be reasonable to implement a simplified version of the
overall simulation at this stage. Such a partial implementation makes it possible to
fully test some of the classes, e.g. class Door, and clarify other aspects such as the
use of the priority queue in the simulation.

Of course, some of the code created for a partial implementation is usually
irrelevant to the final program. You may have to have extra functions that do, in a
simplified way, some work that will later be the responsibility of a different object.
You may assign responsibility for some data to one class, only to find later that you
have to move those data elsewhere. Some code is thrown away. Some time is
wasted.

Disadvantages of
partial, prototype
implementations

Design for a prototype partial implementation 967

Advantages of
partial, prototype
implementations

Although there are disadvantages associated with partial "prototype" implement-
ations they do have benefits. If you "analyse a little, design a little, and implement
a little", you get a better understanding of the problem. Besides, you may find it
boring to have to work out everything on paper in advance; sometimes it is "fun" to
dive in and hack a little.

The simplified version of the program could omit the Checkouts. Customer
objects would just change their state to "terminated" when they finish shopping.
The Manager's role can be restricted to arranging for regular reports to be produced;
these would show the number of customers present. Such changes eliminate most
of the complexities but still allow leave enough to allow testing of the basic
simulation mechanisms.

The classes needed in the reduced version are: Door, Manager, Customer (all of
which are specialized subclasses of class Activity) and Shop.

In addition, the Shop will use an instance of class PriorityQ and possibly some
instances of class List. These will simply be the standard classes from Chapter 24.
The priority queue needs one change from the example given there; the maximum
size of the queue should now be 1000 rather than 50 (change the constant
k_PQ_SIZE in the class header). The List class should not need any changes.

The abstract class, class Activity, should be defined first:

class Activity {
public:

enum State { eTERMINATED, eIDLE, eRUNNING };
Activity(State s = eRUNNING) : fState(s) { }
virtual ~Activity() {}
virtual void Run() = 0;
virtual long Ready_At() = 0;
State Status() { return fState; }

protected:
State fState;

};

It is simply an interface. Activity objects are things that "run" and report when
they will next be ready; how they do this is left for definition in subclasses.
Functions Run() and Ready_At() are defined as pure virtual functions; the
subclasses must provide the implementations.

The abstract class can however define how the Status() function works as this
function is simply meant to give read access to the fState variable. The
constructor sets the fState data member; the default is that an Activity is
"running". Data member fState is protected; this allows it to be accessed and
changed within the functions defined for subclasses.

Note the virtual destructor. Objects are going to be accessed via Activity*
pointers; so we will get code like:

Activity* a = (Activity*) fSim.First();
…
switch (a->Status()) {

case Activity::eTERMINATED:
delete a;
break;

Classes to be defined

Reused classes

Class Activity

Pure virtual
functions to be

defined in subclasses

Definitions for other
member functions

virtual destructor

968 Supermarket example

The delete a operation has to cause the appropriate destructor to be executed. If
you did not specify virtual ~Activity() (e.g. you either didn't include a
destructor or you declared it simply as ~Activity()) the compiler would assume
that it was sufficient either to do nothing special when Activity objects were
deleted, or to generate code that included a call to Activity::~Activity().
However, because virtual has been specified correctly, the compiler know to put
in the extra code that uses the table lookup mechanism (explained in Chapter 26)
and so at run-time the program determines whether a call should be made to
Customer:: ~Customer(), or Manager::~Manager(), or Door::~Door().

If a subclass has no work to be done when its instances are deleted, it need not
define a destructor of its own. (A definition has to be given for Activity::
~Activity(); it is just an empty function, { }, because an Activity has nothing of
its own to do.)

Class Door must provide implementations for Run() and Ready_At(). It will
obviously have its own constructor but it isn't obvious that a Door has to do
anything when it is deleted so there may not be a Door::~Door() destructor (the
"empty" Activity::~Activity() destructor function will get used instead).
Apart from Run(), Status(), and Ready_At(), the only other thing that a Door
might be asked to do is Close().

The specification implies that a file already exists with definitions of the arrays
of arrival times and purchase amounts. These are already defined as "filescope"
variables. If you had the choice, it would be better to have these arrays as static
data members of class Door. However, given the specification requirements, the
file with the arrays should just be #included into the file with the code file Door.cp.
The Door functions can just use the arrays even though they can't strictly be
"owned" by class Door.

The other data that a Door needs include: a pointer to the Shop, a flag indicating
whether the Door is "open", a counter that lets it step through the successive
elements in the Arrivals[] and Purchases[] arrays, and a long integer that
holds the "time" at which the Door is next ready to run.

The class declaration should be along the following lines:

class Door : public Activity {
public:

Door(Shop* s);
void Close();
virtual void Run();
virtual long Ready_At() { return fready; }

private:
Shop *fs; // Link to Shop object
long fready; // Ready time
short fopen; // Open/closed status
short fndx; // Next entries to use from

// Arrivals[], Purchases[]
};

The initial part of the declaration:

class Door : public Activity {

Class Door

Design for a prototype partial implementation 969

essentially states that "A Door is a kind of Activity". Having seen this, the C++
compiler knows that it should accept a programmer using a Door wherever an
Activity has been specified.

The behaviours for the functions are:

Constructor
Set pointer to Shop; initialize fready with time from Shop object;
set fopen to true; and fndx to 0.
(The Shop object will create the Door and can therefore arrange
to insert it into the priority queue used by the simulation.)

Run()
If fopen is false, set fState (inherited from Activity) to
"terminated".
Otherwise, pick number of arriving customers (use entry in
Arrivals[], get random number based on that value as default).
Loop creating Customer objects.

Close()
Set fopen to false.

This version of class Door should not need any further elaboration for the final
program.

Class Customer is again a specialized Activity that provides implementations
for Run() and Ready_At(). The constructor will involve a Customer object
interacting with the Shop so that the counts of Customers can be kept and
Customer objects can be incorporated into the simulation mechanism.

The destructor will also involve interactions with the Shop; as they leave,
Customers are supposed to log details of their total service times etc.

The only other thing that a Customer object might be asked is to report the
number of purchases it has made. This information will be needed by the
Checkout objects once that class has been implemented.

A Customer object needs a pointer to the Shop, a long to record the time that it
is next ready to run, a long for the number of items, and two additional long
integers to record the time of entry and time that it started queuing at a checkout.

A declaration for the class is:

class Customer : public Activity{
public:

Customer(Shop* s, short mean);
~Customer();
virtual void Run();
virtual long Ready_At() { return fready; }
long ItemsPurchased() { return fitems; }

private:
Shop *fs; // Link to shop
long fready; // Ready time
long fstarttime; // Other time data

class Customer

970 Supermarket example

long fstartqueue;
long fitems; // # purchases

};

The behaviours for the functions are:

Constructor
Set pointer to Shop. The second argument to the constructor is to
be used to pick the number of items to purchase; the value is to be
an integer from an exponential distribution with the given mean
value. Pick fitems accordingly.
Record the start time (getting the current time from the Shop
object).
Choose a shopping rate (random in range 1…5) and use this and
the value of fitems to calculate the time the Customer will be
ready to queue.
Tell Shop to "Add Customer".

Run()
In this limited version, just set fState to terminated.

Destructor
Get Shop to log total time; then tell shop that this Customer is
leaving.

The final program will require changes to Run(). The Customer object should get
the Shop to transfer it to the queue at one of the existing Checkouts and set its own
state to "idle" rather than "terminated".

Class Manager is the third of the specialized subclasses of class Activity.
Once again, it has to provide implementations for Run() and Ready_At(). Its
constructor might be a good place to locate the code that interacts with the user to
get the parameters that control the simulation. It does not appear to need to take
any special actions on deletion so may not need a specialized destructor.

So far, it seems that the Manager will only be asked to Run() (and say when it
is ready) so it may not need any additional functions in its public interface. Its
Run() behaviour will eventually become quite complex (it has to deal with the
rules for opening and closing checkouts). Consequently, the final version may have
several private member functions.

The Manager object seems a good place to store most of the control parameters
like the frequency of floor checks, the minimum numbers of fast and standard
checkouts and the control values that trigger the opening of extra checkouts. Other
information required would include the number of customers shopping and queuing
at the last check time (the Shop object can be asked for the current numbers). The
only parameter that doesn't seem to belong solely to the Manager is the constraint
on the number of purchases allowed to users of fast checkouts. This gets used
when picking queues for Customers and so might instead belong to Shop.

A declaration for the class is:

class Manager

Design for a prototype partial implementation 971

class Manager : public Activity{
public:

Manager(Shop* s);
virtual void Run();
virtual long Ready_At() { return fready; }

private:
// Will eventually need some extra functions that
// select when to open/close checkouts

Shop *fs; // Link to shop
long ft; // time between checks
long fready; // Ready time
short fmaxcheckouts;// Control parameters
short fminfast;
short fminstandard;
short fqlen;
short fqtime;
short fQueuingLast;
short fShoppingLast;

};

(All three classes uses the same style of implementation of the function
Ready_At(); this suggest that it could be defined as a default in the Activity class
itself.)

The behaviours for the functions are:

Constructor
Set pointer to Shop; initialize fready with time from Shop object;
set fopen to true; and records from "last check" to -1.
(The Shop object will create the Manager and can therefore
arrange to insert it into the priority queue used by the simulation.)

Prompt the user to input the values of the control parameters for
the simulation.

Run()
If the time is after the shop's closing time, get the shop to make
certain that the door is closed, check the number of customers
still present and if zero change own status to "terminated".
Otherwise get the shop to print a status display and reschedule the
Manager to run again after another ft minutes.

The final program will require changes to Run(). The Manger object will have to
interact with the Shop to get Checkouts opened or closed.

Class Shop is shaping up to be the most elaborate component in the simulation.
A declaration with the members identified so far is:

class Shop {
public:

Shop();

class Shop

972 Supermarket example

// Organizing simulation
void Setup();
void Run();
// Changing customers (and checkouts)
void AddCustomer(Customer* c);
void CustomerLeaves();
// Display of state
void DisplayState();

// keeping statistics
void LogShopTime(int); // Customer times
void LogQueueTime(int);
void LogTotalTime(int);
void LogNumberPurchases(int);

void LogOpenTime(int); // Checkout times
void LogIdleTime(int);

// Time details
long Time();

// closing
void CloseDoor();

// To save having lots of access functions
friend class Manager;

private:
PriorityQ fSim;

Manager *fManager;
Door *fDoor;

long fTime;

short fCustomersPresent;
short fCustomersQueuing;
short ffastlanemax;

long fidle; // Idle time of checkouts
long fworktime; // Total open time of checkouts

…
};

The final program will have several additional data members (lists to keep records
of Checkout objects etc) and some additional member functions.

It seems worthwhile making class Manger a friend of class Shop. The Manager
needs access to data such as the number of customers present. Rather than provide
a series of access functions for all the various data elements that might be needed,
we can use a friend relation. (It isn't just a program "hack"; it is appropriate that a
Manager know all details of the Shop.)

The functions used to record statistical data can start to be defined, even though
at this stage they may have empty implementations. Similarly, we can start to have

Use of a friend
relation

Design for a prototype partial implementation 973

data members that will be used to store the statistics, e.g. an integer fidle to store
the total time that there were checkouts that were open but idle.

The behaviours for the functions are:

Constructor
Initialize all data members (fidle = 0; fTime = kSTARTTIME;
etc).

Setup()
Create Manager and Door objects, insert them into the
PriorityQueue fSim.

Run()
Implementation of loop shown earlier in which Activity objects
get removed from the priority queue and given a chance to run.

AddCustomer()
Update count of customers present, and insert customer into
priority queue.

CustomerLeaves()
Decrement counter.

DisplayState()
Show time and number of customers (might need an auxiliary
private member function to "pretty print" time).
Full implementation will need display details of active and idle
checkouts as well.

Log functions
All empty "stubs" in this version.

Time()
Access function allowing instances of other classes to have read
access to fTime.

CloseDoor()
If fDoor pointer not NULL, tell door to close then set fDoor to
NULL.

There doesn't appear to be any need for a destructor. Output of the time in a
"pretty" format (e.g. 9.07 a.m., 3.56 p.m.) might be handled in some extra private
PrintTime() member function.

Member functions of
class Shop

974 Supermarket example

27.3 A PARTIAL IMPLEMENTATION

main() and auxiliary functions

Most of the code for main() was given earlier (just before introduction of the
"activity" class hierarchy). There is one extra feature. The manager using the
program wants to be able to run simulations of slightly different patterns of
customer arrivals, and simulations using an identical pattern of arrivals but different
parameters.

This can be achieved by allowing the user to "seed" the pseudo random number
generator. Since "pseudo random numbers" are generated algorithmically, different
runs using the same seed will get identical sequences of numbers. Use of a
different seed results in a different number sequence.

int main(int,char**)
{

long aseed;
cout << "Enter a positive integer to seed the random "

"number generator\n";
cin >> aseed;

srand(aseed);

Shop aSuperMart;
… // as shown above

The random number generator in the standard maths library produces numbers
that are uniformly distributed. This program also requires some numbers that are
taken from an exponential distribution with a defined mean (such a distribution has
large numbers of small values, and a tail with large values). Most versions of the
maths library don't include this version of the number generator. The required
function, erand(), uses the normal random number generator rand() and a few
mathematical conversions to produce random numbers with the required
characteristics:

int erand(int mean)
{

return int(-mean *log(
double(SHRT_MAX-rand() + 1)/SHRT_MAX)

 + 0.5);
}

This function can be defined in the file with the code for class Customer; the
header files math.h, stdlib.h, and limits.h must be #included. (This implementation
of erand() assumes that rand() generates values in the range 0…SHRT_MAX. Your
implementation may use a different range in its random number generator, so you
may need to modify this definition of erand(). The range used by rand() is
supposed to be defined by constants in the limits.h header file but many systems do
not comply.)

Seeding the random
number generator

Random numbers
from an exponential

distribution

erand()

Partial implementation 975

Module structure

Like the examples in Chapter 22, this program should be built from many separate
files (a header file and an implementation file for essentially every class).
Consequently, you have to sort out "header dependencies".

A possible arrangement of files, and most of the header dependencies, is shown
in Figure 27.6. (Standard header files provided by the IDE are not shown.)

The main program defines an instance of class Shop and therefore must #include
the Shop.h header. The class definition in Shop.h will specify that a Shop object
contains as a PriorityQ as a data member. Consequently, the header Shop.h can
only be handled if the header declaring the PriorityQ has been read; hence the
dependency from Shop.h to pq.h.

The declaration of class Shop also mentions Manager, Customer, and Door but
these only appear as pointer types. It isn't essential to read the declarations of these
classes to compile Shop.h; but these names must be defined as class names. So file
Shop.h starts with simple type declarations:

main.cp

main.o

Shop.cp

Shop.o

Shop.h

pq.cp

pq.o

pq.h

Manager.cp

Manager.o

Manager.h

Door.cp

Door.o

Door.h

Activity.h

Customer.cp

Customer.o

Customer.h

Figure 27.6 Module structure and header dependencies for partial
implementation of "Supermarket" example.

#ifndef __SHOP__
#define __SHOP__

#ifndef __MYPQ__
#include "pq.h"
#endif

Header file
dependencies

Shop.h header file

976 Supermarket example

const int kSTARTTIME = 480; // 8am, in minutes
const int kCLOSETIME = 540; // 9am, in minutes

class Door;
class Manager;
class Customer;

class Shop {
public:

Shop();
…
void AddCustomer(Customer* c);
…
friend class Manager;

private:
PriorityQ fSim;
…

Manager *fManager;
Door *fDoor;
…

};

#endif

All header files must be bracketed with #ifdef __XX__ … #endif conditional
compilation directives to avoid problems from multiple inclusion. (You can see
from Figure 27.6, that the file "Activity.h" will in effect be #included three times by
Shop.cp.) The italicised lines in the file listing above illustrate these directives.

By now you must have noticed that the majority of time used by your compiler
is devoted to reading header files (both Symantec and Borland IDE's have
compilation-time displays that show what the compiler is working on, just watch).
Having #ifdef … #endif compiler directives in the files eliminates errors due to
multiple #includes but the compiler may still have to read the same file many times.
The example above illustrates a technique that can slightly reduce compile times;
you will note that the file "pq.h" will only get opened and read if it has not already
been read.

The two constants define the start and end times for the partial simulation; these
values are need in Manger.cp and Shop.cp. The values will be changed for the full
implementation.

The implementation file Shop.cp contains calls to member functions of the
various "activity classes"; consequently, Shop.cp must #include their headers (so
that the compiler can check the correctness of the calls). These dependencies are
shown in Figure 27.6 by the links from Shop.cp to Customer.h etc.

The three "activity classes" all need to #include Activity.h into their own header
files. As they all have Shop* data members, their headers will need a declaration
of the form class Shop;. Classes Customer and Manager both use features of class
Shop, so their implementation files have to #include the Shop.h header.

The final implementation will add classes List, Histogram, and Checkout.
Their files also have to be incorporated into the header dependency scheme. Class

Protect against
multiple #includes

Reducing compile
times

The constants
kSTARTTIME …

Partial implementation 977

List and Histogram have to be handled in the same way as class PriorityQ; class
Checkout will be the same as class Manager.

class Shop

The constructor for class Shop is trivial, just a few statements to zero out counters
and set fTime to kSTARTTIME. The Setup() function creates the collaborating
objects. Both need to have a Shop* pointer argument for their constructors that is
supposed to identify the Shop object with which they work; hence the this
arguments.

void Shop::Setup()
{

fDoor = new Door(this);
fManager = new Manager(this);
fSim.Insert(fManager, fManager->Ready_At());
fSim.Insert(fDoor, fDoor->Ready_At());

}

Once created, the Manager and Door objects get inserted into the PriorityQ fSim
using their "ready at" times as their priorities.

The main simulation loop is defined by Shop::Run():

void Shop::Run()
{

while(!fSim.Empty()) {
Activity* a = (Activity*) fSim.First();
fTime = a->Ready_At();
a->Run();
switch (a->Status()) {

case Activity::eTERMINATED:
delete a;
break;

case Activity::eIDLE:
break;

case Activity::eRUNNING:
fSim.Insert(a, a->Ready_At());
}

}
}

Adding a Customer object to the simulation is easy:

void Shop::AddCustomer(Customer* c)
{

fSim.Insert(c, c->Ready_At());
fCustomersPresent++;

}

The DisplayState() and auxiliary PrintTime() functions provide a limited
view of what is going on at a particular time:

978 Supermarket example

void Shop::DisplayState()
{

cout << "------" << endl;
cout << "Time ";
PrintTime();
cout << endl;
cout << "Number of customers " << fCustomersPresent << endl;

}

void Shop::PrintTime()
{

long hours = fTime/60;
long minutes = fTime % 60;
if(hours < 13) {

cout << hours << ":" << setw(2) <<
setfill('0') << minutes;

if(hours < 12) cout << "a.m.";
else cout << "p.m.";
}

else cout << (hours - 12) << ":" << setw(2) <<
 setfill('0') << minutes << "p.m.";

}

File Shop.cp has to #include the iomanip.h header file in order to use facilities like
setw() and setfill() (these make it possible to print a time like seven minutes
past eight as 8.07).

Most of the "logging" functions should have empty bodies, but for this test it
would be worthwhile making Shop::LogNumberPurchases(int num) print the
argument value. This would allow checks on whether the numbers were suitably
"exponentially distributed".

class Door

The constructor for class Door initialises its various data members, getting the
current time from the Shop object with which it is linked.

The only member function with any complexity is Run():

void Door::Run()
{

if(fopen) {
int count = Arrivals[fndx];
if(count>0) {

count = 1 + (rand() % (count + count));
for(int i=0;i<count;i++)

Customer* c = new
Customer(fs,Purchases[fndx]);

}
fndx++;
fready = fs->Time() + 1;
}

else fState = eTERMINATED;
}

Partial implementation 979

On successive calls, Run() takes data from successive locations in the file scope
Arrivals[] and Purchases[] arrays. These data are used to determine the
number of Customer objects to create. The first time that Run() gets executed
after the Close() function, it changes the state to "terminated".

class Manager

The constructor for class Manager can be used to get the control parameters for the
current run of the program. Most input data are used to set data members of the
Manager object; the "maximum number of items for fast checkout" is used to set
the appropriate data member of the Shop object. (The Manager is a friend so it can
directly change the Shop's data member.)

Manager::Manager(Shop* s)
{

fs = s; // Set link to shop
cout << "Enter time interval for managers checks on "

"queues (min 5 max 60)\n";
short t;
cin >> t;

if((t<5) || (t>60)) {
t = 10;
cout << "Defaulting to checks at 10 minute "

"intervals\n";
}

ft = t;

cout << "Enter maximum number of checkouts (15-40) ";
…
fmaxcheckouts = t;

cout << "Enter minimum number of fast checkouts (0-3) ";
…
…

cout << "Enter maximum purchases for fast lane "
"customers (5-15)\n";

cin >> t;
// Code to check value entered
…
// then copy into Shop object's data member
fs->ffastlanemax = t;

…

fready = fs->Time();
fQueuingLast = fShoppingLast = -1;

}

Exploit "friendship"
with Shop

980 Supermarket example

The Run() function will have to be elaborated considerably in the final version
of the program. In this partial implementation it has merely to get the shop to print
its state, then if the time is before the closing time, it reschedules the Manager to
run again after the specified period. If it is later than the closing time, the Shop
should be reminded to close the door (if it isn't already closed).

void Manager::Run()
{

fs->DisplayState();
if(fs->Time() < kCLOSETIME) {

fready = fs->Time() + ft;
}

else {
fs->CloseDoor();
fready = fs->Time() + 5;
if(fs->fCustomersPresent == 0) fState = eTERMINATED;
}

}

The Manager object can "terminate" if it is after closing time and there are no
Customer objects left in the store.

class Customer

The constructor is probably the most elaborate function for this class. It has to pick
the number of items to purchase and a shopping rate (change that SHRT_MAX to
RAND_MAX if this is defined in your limits.h or other system header file). The
shopping time is at least 2 minutes (defined as the constant kACCESSTIME) plus the
time needed to buy items at the specified rate. This shopping time determines when
the Customer will become ready.

The Customer object can immediately log some data with the Shop.

Customer::Customer(Shop* s, short t)
{

fs = s;
fitems = 1 + erand(t);
while (fitems>250)

fitems = 1 + erand(t);
fstarttime = fs->Time();
double ItemRate = 1.0 + 4.0*rand()/SHRT_MAX;
int shoptime = kACCESSTIME + int(0.5 + fitems/ItemRate);
fready = fstarttime + shoptime;
fs->AddCustomer(this);
fs->LogShopTime(shoptime);
fs->LogNumberPurchases(fitems);

}

The destructor arranges for the Customer object to "check out" of the Shop:

Customer::~Customer()
{

Partial implementation 981

fs->LogTotalTime(fs->Time()-fstarttime);
fs->CustomerLeaves();

}

Testing

The other functions not given explicitly are all simple and you should find it easy to
complete the implementation of this partial version of the program.

Traces from LogNumberPurchases() should gives number sequences like: 2,
2, 11, 2, 6, 3, 6, 12, 2, 6, 1, 15, 3, 6, 3, 5, 16, 6, 11, 3, 3, 19, …; pretty much the sort
of exponential distribution expected. A test run produced the following output
showing the state of the shop at different times:

Time 8:00a.m.
Number of customers 8

Time 8:10a.m.
Number of customers 8

Time 8:20a.m.
Number of customers 5

Time 8:30a.m.
Number of customers 19

…
Time 9:10a.m.
Number of customers 2

Time 9:15a.m.
Number of customers 0

27.4 FINALISING THE DESIGN

There are two main features not yet implemented – operation of checkouts with
customers queuing at checkouts, and the histograms. The histograms are easier so
they will be dealt with first.

27.4.1 Histograms

The Histogram class comes from the "tasks" class library.
The "tasks" library is often included with C++ systems. Since it is about fifteen

years old its code is old fashioned. (Also, it contains some "coroutine" components
that depend on assembly language routines to modify a program's stack. If the
tasks library is not included with your compiler, it is probably because no one
converted these highly specialized assembly language routines. A "Coroutine" is a
specialized kind of control structure used mainly in sophisticated forms of
simulation.)

982 Supermarket example

The histogram class keeps counts of the number of items (integer values) that
belong in each of a set of "bins". It automatically adjusts the integer range
represented by these bins. When all data have been accumulated, the contents of
the bins can be displayed. Other statistics (number of items, minimum and
maximum values, mean and standard deviation) are also output.

The interface for the class is simple. Its constructor takes two character strings
for labels in the final printout, and a number of integers that define things like the
number of bins to be used. The Add() member function inserts another data item
while Print() produces the output summary. There are several data members;
these include char* pointers to the label strings, records of minimum and
maximum values observed, sum and sum of squares (needed to calculate mean and
standard deviation) and an array of "bins".

// Based on code in ATT C++ "tasks" library.
class myhistogram {
public:

myhistogram(char* title = "", char* units = "",
int numbins = 16,int low = 0,int high = 16);

void Add(int);
void Print();

private:
int l,r; // total range covered
int binsize; // range for each "bin"
int nbin; // number of "bins"
int *h; // the array of "bins" with counts
long sum; // data for calculating average
long sqsum; // standard deviation etc
short count;
long max; // nax and min values recorded
long min;
char *atitle; // pointers to labels
char *aunits;

};

The constructor works out the number of bins needed, allocates the array, and
performs related initialization tasks. (It simply stores pointers to the label strings,
rather than duplicating them; consequently the labels should be constants or global
variables.)

myhistogram::myhistogram(char* title, char* units,
int numbins, int low, int high)

{
atitle = title;
aunits = units;

int i;
if (high<=low || numbins<1) {

cerr << "Illegal arguments for histogram\n";
exit(1);
}

if (numbins % 2) numbins++;

while ((high-low) % numbins) high++;

class myhistogram

Allocate the bins
array

Histograms 983

binsize = (high-low)/numbins;
h = new int[numbins];

for (i=0; i<numbins; i++) h[i] = 0;
l = low;
r = high;
nbin = numbins;
sum = 0;
sqsum = 0;
count = 0;
max = LONG_MIN;
min = LONG_MAX;

}

The Add() member function does quite a lot more than just increment a
counter. Most of the code concerns recalculation of the total range represented and
size of each bin in accord with the data values entered. The various counters and
sums etc are also updated.

void myhistogram::Add(int a)
{

count++;

max = (max > a) ? max : a;
min = (min < a) ? min : a;

/* add a to one of the bins, adjusting histogram,
if necessary */
int i, j;
/* make l <= a < r, */
/* possibly expanding histogram by doubling binsize
and range */
while (a<l) {

l -= r - l;
for (i=nbin-1, j=nbin-2; 0<=j; i--, j-=2)

h[i] = h[j] + h[j+1];
while(i >= 0) h[i--] = 0;
binsize += binsize;
}

while (r<=a) {
r += r - l;
for (i=0, j=0; i<nbin/2 ; i++, j+=2)

h[i] = h[j] + h[j+1];
while (i < nbin) h[i++] = 0;
binsize += binsize;
}

sum += a;
sqsum += a * a;
h[(a-l)/binsize]++;

}

The Print() function outputs the summary statistics and then loops through
the array of bins outputting their values as numbers.

984 Supermarket example

void myhistogram::Print()
{

if(count <= 1) {
cout << "Too little data for histogram!\n";
return;
}

cout << "\n\n" << atitle << "\n\n";
cout << "Number of samples " << count << "\n";

double average = ((double)sum)/count;
double stdev =

sqrt(((double)sqsum - sum*average)/(count-1));

cout << "Average = " << average << aunits << "\n";
cout << "Standard deviation = " << stdev << aunits <<

"\n";

cout << "Minimum value = " << min << aunits << "\n";
cout << "Maximum value = " << max << aunits << "\n";

int i;
int x;
int d = binsize;

for (i=0; i<nbin; i++) {
x = h[i];
if (x != 0) {

int ll = l+d*i;
cout << "[";
cout << setw(4) << setfill(' ');
cout << ll << " :" << ll + d << "]\t: ";
cout << setw(6) << x << "\n";

}
}

}

The function uses features from the iomanip library so the iomanip.h header file
must be #included.

The program is supposed to produce histograms showing the variations in
numbers of items purchased, queuing times, shopping times, and total times spent
by customers. Consequently, class Shop had better have myhistogram data
members for each of these profiles. (The statistics needed for idle times of
checkouts etc just require totals rather than histograms).

class Shop {
public:

…
private:

…
// As before, plus
myhistogram fPurchases;
myhistogram fQTimes;
myhistogram fShopTimes;
myhistogram fTotalTimes;

Use of histograms

Histograms 985

};

The constructor for class Shop has to arrange for the initialization of its
myhistogram data members. The constructor for the myhistogram class has
defaults for its arguments, but we would want the histograms to have titles so
explicit initialization is required:

Shop::Shop() : fPurchases("Number items purchased"),
fQTimes("Queuing times"), fShopTimes("Shopping times"),
fTotalTimes("Total time customer in shop")

{
fTime = kSTARTTIME;
fidle = fworktime = 0;
fCustomersPresent = fCustomersQueuing = 0;

}

Constructors for data members have to be invoked prior to entry to the body of the
constructor for the class. As previously illustrated, Chapter 25, the calls to the
constructors for data members come after the parameter list for the class's
constructor and before the { begin bracket of the function body. A colon separates
the list of data member constructors from the parameter list.

The "log" functions simply request that the corresponding myhistogram object
"add" an item to its record:

void Shop::LogNumberPurchases(int num)
{

fPurchases.Add(num);
}

The statistics gathered in a run are to be printed when the main loop in
Shop::Run() completes. Class Shop should define an additional private member
function, ReportStatistics(), that gets called from Run() to print the final
information. A preliminary implementation would be:

void Shop::ReportStatistics()
{

fPurchases.Print();
fShopTimes.Print();

}

The existing partial implementation can be extended to test the histogram
extensions. It should produce outputs like the following:

Number items purchased

Number of samples 234
Average = 6.371795
Standard deviation = 6.753366
Minimum value = 1
Maximum value = 47
[0 :4] : 100
[4 :8] : 72

Changed constructor
for class Shop

Effective
implementation for
the "log" functions

Extra Shop::
ReportStatistics()

private member
function

Retesting

986 Supermarket example

[8 :12] : 29
…
…
[44 :48] : 1

Shopping times

Number of samples 234
Average = 4.602564
Standard deviation = 3.583485
Minimum value = 2
Maximum value = 39
[0 :4] : 112
[4 :8] : 96
…
[36 :40] : 1

27.4.2 Simulating the checkouts and their queues

All that remains is the checkouts. The checkouts are relatively simple in
themselves; the complexities lie in the operations of Shop and Manager that involve
Checkout objects.

What do Checkout objects get asked to do?

Checkout objects will get created at the behest of the Manager (the Manager might
create the Checkout and pass it to the Shop, or the Manager might direct the Shop
object to handle creation). They are created as either "fast" or "standard" and don't
subsequently change their type. When initially created, they are "idle".

Checkout objects will be asked to "add a customer" to a queue. The queue can
be represented by a List data member; customers get appended to the end of the
list and get removed from the front. The Shop object will be responsible for giving
Customer objects to the Checkout objects. The Shop can take responsibility for
dealing with cases where a Customer gets added to an idle Checkout; after it has
dealt with the addition operation, the Checkout should get put into the Shop's
PriorityQ fSim. The Checkout object however will have to do things like noting
the time for which it has been idle.

Since a Checkout is a kind of Activity, it must provide implementations of
Run() and Ready_At(). The Ready_At() function can be handled in the same
way as was done for the other specialized Activity classes. The Run() function
will get called when a Checkout is due to have finished with a Customer; that
Customer can be deleted. If there are other Customer objects queued, the
Checkout can remove the first from its list. The Customer should be told to report
the length of time that it has been queuing. If the queue is empty, the Checkout
should mark its state as "idle" and should notify the Shop.

The Manager object's rules for creating and destroying Checkout objects depend
on details like average queuelengths and workloads. The Shop object is supposed
to pick the best Checkout for a Customer; choosing the best depends on details of

Adding customers

Ready_At() and
Run()

Queuelength and
workload

Checkouts 987

workload and type ("fast" or "standard"). Consequently, a Checkout will have to
be able to supply such information.

Checkout objects that are not idle should display their queues as part of the
Shop object's DisplayState() process.

When a Checkout object gets deleted, it should report details of its total time of
operation and its idle time. These reports get made to the Shop object so that
relevant overall statistics can be updated.

What do Checkout objects own?

Checkout objects will need:

• a pointer to the Shop object;
• long integers representing time current task completed, time current task

started, time of creation, total of idle periods so far;
• a list to hold the queuing Customer objects;
• a pointer to the Customer currently being served;
• a short to hold the "fast" or "standard" type designation.

Design diagram for class Checkout

Figure 27.6 is a class "design diagram" that summarizes the features of class
Checkout. Such diagrams are often used as a supplement to (or alternative to)
textual descriptions like those given earlier for the other Activity classes like class
Manager.

The diagram in Figure 27.7 is simpler than the styles that you will be using later
when you have been taught the current standard documenting styles, but it still
provides an adequate summary. The header should give details of inheritance.
There should be a means of distinguishing the public interface and private
implementation. Public functions should have a brief comment explaining their
role (often details of return types and argument lists are omitted because these
design diagrams can be sketched out before such fine details have been resolved).

It is often useful to distinguish between "own data" and "links to collaborators".
Both are implemented as "data members". It is just a matter of a different role, but
it is worth highlighting such differences in documentation.

Implementation of class Checkout

The implementation of class Checkout will identify a few extra member functions
that will be needed in class Customer and class Shop.

For example, a Checkout has to notify a Customer when processing starts; this
is needed to allow the Customer object to work out its queuing time and report this
to the Shop. Consequently, class Customer will need an additional function, "finish
queuing", in its public interface.

DisplayState

Destructor

988 Supermarket example

Such extra functions would be noted while the implementation of class
Checkout was sketched out. Subsequently, the extra functions would be defined in
the other classes.

class Checkout :
public Activity

Checkout(Shop* s, short ctype);

~Checkout();

virtual void Run();

virtual long Ready_At();

long WorkLoad();

short QueueLength();

void AddCustomer(Customer*);

short CheckoutType();

void DisplayState();

long fready, fcreated, fidle,
 fstart;
List fQueue;
short ft;

Customer *fCurrentCustomer;
Shop *fs;

class name and details of
inheritance

private data and functions;

own data;

links to collaborators

public interface

constructor

destructor, logs times with Shop

rinishes current customer, start next or become idle

report "ready time"

return an estimate of workload

return queue length

if working , just add customer to queue, otherwise deal

 with records of idle time and start to serve customer

report type

display queue "graphically"

Figure 27.7 Design diagram for class Checkout.

Previous examples have shown cases where data members that were instances of
classes had to have their constructors invoked prior to entry to the main body of a
constructor. This time, we need to invoke the base class's constructor (Activity::
Activity()). The other specialized subclasses of Activity relied on the default
parameters to initialize the "activity" aspect of their objects. But, by default, the
initializer for class Activity creates objects whose state is "running". Here we
want to create an object that is initially "idle". Consequently, we have to explicitly
invoke the constructor with the appropriate eIDLE argument; while we are doing
that we might as well initialize some of the other data members as well:

Checkout::Checkout(Shop* s, short t) : Activity(eIDLE),
 fs(s) , ft(t)

{
fCurrentCustomer = NULL;
fidle = 0;
fcreated = fready = fs->Time();

}

The "type" of a Checkout (argument t for constructor, data member ft) could use
some integer coding (e.g. 1 => fast, 0 => standard).

Checkout's
constructor

Checkouts 989

DestructorThe destructor should finalize the estimate of idle time and then log the
Checkout's idle and open times with the Shop:

Checkout::~Checkout()
{

fidle += fs->Time() - fready;
fs->LogIdleTime(fidle);
fs->LogOpenTime(fs->Time() - fcreated);

}

The Run() function starts by getting rid of the current customer (if any). Then,
if there is another Customer in the queue, this object is removed from the queue to
become the current customer, is notified that it has finished queuing, and a new
completion time calculated based on the processing rate (kSCANRATE) and the
number of items purchased.

void Checkout::Run()
{

if(fCurrentCustomer != NULL) {
delete fCurrentCustomer;
fCurrentCustomer = NULL;
}

if(fQueue.Length() > 0) {
fCurrentCustomer = (Customer*) fQueue.Remove(1);
fCurrentCustomer->FinishQueuing();
fstart = fs->Time();
short t = fCurrentCustomer->ItemsPurchased();
 t /= kSCANRATE;
t = (t < 1) ? 1 : t;
fready = fstart + t;
}

else {
fState = eIDLE;
fs->NoteCheckoutStopping(this);
}

}

Alternatively, if its queue is empty, the Checkout becomes idle and notifies the
Shop of this change.

The version of List used for this example could be that given in Chapter 26
with the extra features like a ListIterator. The Checkout::WorkLoad()
function can use a ListIterator to run down the list of queuing customers getting
each to state the number of items purchased. Unscanned items from the current
customer should also be factored into this work load estimate.

long Checkout::WorkLoad()
{

long res = 0;
ListIterator LL(&fQueue);
LL.First();

Using a ListIterator

ListIterator

990 Supermarket example

while(!LL.IsDone()) {
Customer *c = (Customer*) LL.CurrentItem();
res += c->ItemsPurchased();
LL.Next();
}

if(fCurrentCustomer != NULL) {
long items = fCurrentCustomer->ItemsPurchased();
long dlta = (items - kSCANRATE*(fs->Time()-fstart));
dlta = (dlta < 0) ? 0 : dlta;
res += dlta;
}

return res;
}

The work involved in adding a customer depends on whether the Checkout is
currently idle or busy. Things are simple if the Checkout is busy; the new
Customer is simply appended to the list associated with the Checkout. If the
Checkout is idle, it can immediately start to serve the customer; it should also
notify the Shop so that the records of "idle" and "busy" checkouts can be updated.

void Checkout::AddCustomer(Customer* c)
{

if(fState == eIDLE) {
fidle += fs->Time() - fready;
fCurrentCustomer = c;
fCurrentCustomer->FinishQueuing();
fstart = fs->Time();
short t = fCurrentCustomer->ItemsPurchased();
t /= kSCANRATE;
t = (t < 1) ? 1 : t;
fready = fstart + t;
fState = eRUNNING;
fs->NoteCheckoutStarting(this);
}

else fQueue.Append(c);
}

The final DisplayState() function just has to provide some visual indication
of the number of customers queuing, e.g. a line of '*'s.

27.4.3 Organizing the checkouts

The addition of Checkout objects in the program requires only a minor change in
class Customer. Its Customer::Run() function no longer sets its state to
terminated, instead a Customer should set its state to eIDLE and ask the Shop object
to find it a Checkout where it can queue.

However, classes Shop and Manager must have major extensions to allow for
Checkouts.

The Manager object will be telling the Shop to add or remove Checkouts; the
type (fast or standard) will be specified in these calls:

Additional
responsibilities for

class Shop

Organizing the Checkouts 991

void Shop::AddCheckout(short ctype);
void Shop::RemoveIdleCheckout(short ctype);

Checkout objects notify the Shop when the start or stop work:

void Shop::NoteCheckoutStarting(Checkout* c);
void Shop::NoteCheckoutStopping(Checkout* c);

and, as just noted, Customer objects will be asking the Shop to move them onto
queues at Checkouts:

void Shop::QueueMe(Customer* cc);

The Shop has to keep track of the various Checkouts, keeping idle and busy
checkouts separately. It would probably be easiest if the Shop had four List
objects in which it stored Checkouts:

List fFastIdle;
List fStandardIdle;
List fFastWorking;
List fStandardWorking;

The AddCheckout(), RemoveIdleCheckout() will both involve "idle" lists; the
ctype argument can identify which list is involved.

When a Checkout notifies the Shop that it has stopped working, the Shop can
move that Checkout from a "working" list to an "idle" list (the Shop can ask the
Checkout its type and so determine which lists to use). Similarly, when a
Checkout starts, the Shop can move it from an "idle" list to a "working" list (and
also get it involved in the simulation by inserting it into the priority queue as well).

The only one of these additional member functions that is at all complex is the
Checkout::QueueMe() function which is outlined below.

The Manager object will need information on the numbers of idle and busy
checkouts etc. Since the Manager is a friend of class Shop, it can simply make calls
like:

long num_working = fs->fFastWorking.Length() +
fs->fStandardWorking.Length();

long num_idle = fs->fFastIdle.Length() +
fs->fStandardIdle.Length();

Here, the Manager uses its Shop* pointer fs to access the Shop object, exploiting
its friend relation to directly use a private data member like fFastWorking; the
List::Length() function is then invoked for the chosen List object.

The additional responsibilities for class Manager all relate to the application of
those rules for choosing when to open and close checkouts. The Manager::Run()
function needs to get these rules applied each time a check on the shop is made; this
function now becomes something like:

void Manager::Run()
{

Extra data members

Manager exploits
friend relation

992 Supermarket example

fs->DisplayState();
if(fs->Time() < kCLOSETIME) {

Sortoutcheckouts();
fready = fs->Time() + ft;
}

else {
fs->CloseDoor();
Closingcheckouts();
fready = fs->Time() + 5;
if(fs->fCustomersPresent == 0)

fState = eTERMINATED;
}

}

There are two additional calls to new functions that will become extra private
member functions of class Manager. The function Sortoutcheckouts() will
apply the full set of rules that apply during opening hours; the Closing-
checkouts() function will apply the simpler "after 7 p.m. rule".

A function like Closingcheckouts() is straightforward. The Manager can get
details of the numbers of checkouts (fast and standard, idle and working) by
interrogating the List data members of the Shop. Using these data, it can arrange
to close checkouts as they become idle (making certain that some checkouts are left
open so long as there are Customers still shopping):

void Manager::Closingcheckouts()
{

/* It is after 7pm, close the fast checkouts as they
become idle. */
int fastidle = fs->fFastIdle.Length();
for(int i=0; i < fastidle; i++)

fs->RemoveIdleCheckout(kFAST);

int standardidle = fs->fStandardIdle.Length();
int standardworking = fs->fStandardWorking.Length();

/*
So long as there are checkouts working can get rid of
all idle ones (if any).
*/
if((standardworking > 0) && (standardidle > 0)) {

for(i=0; i < standardidle; i++)
fs->RemoveIdleCheckout(kSTANDARD);

return;
}

/*
If there are no customers left close all idle checkouts
*/
if(fs->fCustomersPresent == 0) {

for(i=0; i < standardidle; i++)
fs->RemoveIdleCheckout(kSTANDARD);

return;
}

/*

Organizing the Checkouts 993

May end up with state where there are customers still
shopping but all checkouts idle. Close all but one.
*/
for(i=0; i < standardidle - 1; i++)

fs->RemoveIdleCheckout(kSTANDARD);
}

The rules that define normal operation are too complex to be captured in a single
function. Once again, the functional decomposition approach has to be applied.
The Manager has to consider three aspects: checking that minimum numbers of
checkouts are open, checking for idle checkouts that could be closed, and checking
for excessive queues that necessitate opening of checkouts. Inevitably, the
Sortoutcheckouts() function becomes:

void Manager::Sortoutcheckouts()
{

OpenMinimumCheckouts();
LookAtIdleCheckouts();
ConsiderExtraCheckouts();

}

The function has been decomposed into three simpler functions that allow
individual consideration of the different rules. In some cases, further de-
composition into yet simpler functions is necessary. Aspects of these functions are
illustrated below.

Final class definitions

Figures 27.8 and 27.9 show the finalized design diagrams for classes Manager and
Shop.

Use "top down
functional

decomposition" for
complex functions

994 Supermarket example

class Manager :
public Activity

Manager(Shop* s);

virtual void Run();

virtual long Ready_At();

short ft, fready
 fmaxcheckouts, fminfast,
 fminstandard,
 fQueuingLast,
 fShoppingLast
 fqlen, fwork;

Shop *fs;

class name and details of
inheritance

private data and functions;

own data;

links to collaborators

public interface

constructor

Arranges display of shop and running of

 checkout rules

Reports when next ready

Sortoutcheckouts();

Closingcheckouts();

OpenMinimumCheckouts();

LookAtIdleCheckouts();

ConsiderExtraCheckouts();

CheckQueuesAtFastCheckouts();

CheckTimesAtStandardCheckouts();

Apply main checkout rules

Apply closing time rules

Verify minimum checkouts

Consider closing idle checkouts

Possibly add checkouts

Check queues to see if need extra fast checkout

Check times to see if need extra standard checkout

Figure 27.8 Final design diagram for class Manager.

Class Manager retains a very simple public interface. The Manager object is
only used in a small number of ways by the rest of the program. However, the
things that a Manager gets asked to do are complex, and consequently the class has
a large number of private implementation functions.

Class Shop has an extensive public interface – many other objects ask the Shop
to perform functions. Most of these member functions are simple (just increment a
count, or move the requestor from one list to another); consequently, there is only
limited need for auxiliary private member functions.

Diagram 27.9 also indicates that a "friend" relationship exists that allows a
Manager object to break the normal protection around the private data of the Shop
object.

Organizing the Checkouts 995

class Shop

Shop();

void Setup();

void Run();

void AddCustomer(Customer* c);

void CustomerLeaves();

void DisplayState();

void LogShopTime(int);

void LogQueueTime(int);

void LogTotalTime(int);

void LogNumberPurchases(int);

void LogIdleTime(int);

void LogOpenTime(int);

long Time();

void CloseDoor();

void AddCheckout(short ctype);

void RemoveIdleCheckout(short ctype);

void NoteCheckoutStarting(Checkout* c);

void NoteCheckoutStopping(Checkout* c);

void QueueMe(Customer* cc);

PriorityQ fSim;
long fTime, fidle, fworktime;

short fCustomersPresent,
 fCustomersQueuing

 ffastlanemax;

myhistogram fPurchases, fQTimes,

 fShopTimes, fTotalTimes;

List fFastIdle, fStandardIdle,
 fFastWorking, fStandardWorking;

Manager *fManager;
Door *fDoor;

private data and functions;

own data; includes instances
 of simple classes like
 List, myhistogram, and
 PriorityQ

links to collaborators

public interface

constructor, initialize simple variables

create Manager, Door etc; insert in PriorityQ

run simulation loop

update customer counts etc

organize display of time, outputs from checkouts

functions that record statistics on Customers

functions that record statistics on Checkouts

Access function for "system time"

Functions changing state of system, number

 of checkouts etc

Functions rearranging Checkouts, placing

 Customers on Checkout queues

void PrintTime();

void ReportStatistics();

Pretty print time as part of a report

Print final statistics

friend class Manager

Figure 27.9 Final design diagram for class Shop.

Implementation of the more elaborate functions

The function Shop::QueueMe(Customer*) involves finding an appropriate
Checkout for the requesting Customer object.

The code starts by determining whether the Customer is able to use both fast and
standard Checkouts, or just the standard Checkouts.

996 Supermarket example

Next, the function checks for idle Checkouts (both types if the customer is
allowed to used the fast lanes, otherwise just the "idle standard" Checkouts). If
there is a suitable idle Checkout, the Customer can be queued and the function
finishes:

void Shop::QueueMe(Customer* cc)
{

int fast = (cc->ItemsPurchased() <= ffastlanemax) ||
(99 == (rand() % 100));

/*
If appropriate, try for an idle checkout
*/
if(fast && (fFastIdle.Length() > 0)) {

Checkout *c = (Checkout*) fFastIdle.Nth(1);
c->AddCustomer(cc);
return;
}

if(fStandardIdle.Length() > 0) {
Checkout *c = (Checkout*) fStandardIdle.Nth(1);
c->AddCustomer(cc);
return;
}

If there is no idle Checkout, the function has to search through either both lists
of working Checkouts (or just the list of standard checkouts) to find the one with
the least load. These searches through the lists can again take advantage of
ListIterators:

long least_load = LONG_MAX;
Checkout *best = NULL;

if(fast) {
ListIterator L1(&fFastWorking);
L1.First();
while(!L1.IsDone()) {

Checkout *c = (Checkout*) L1.CurrentItem();
long load = c->WorkLoad();
if(load < least_load) {

least_load = load;
best = c;
}

L1.Next();
}

}

ListIterator L2(&fStandardWorking);
// Code similar to last ListIterator loop

The Customer choses the Checkout with the smallest workload (there had better be
a test to verify that there was a Checkout where the Customer could queue):

Organizing the Checkouts 997

if(best == NULL) {
cout << "Store destroyed by rioting customers."

"No checkouts open." << endl;
exit(1);
}

else best->AddCustomer(cc);

fCustomersQueuing++;
}

The remaining functions of class Manager also involve interrogation of the
various List data members of the associated Shop object; there are also several
places where ListIterators get employed to work through all entries in one of
these lists. The most complex of the rules used by the Manager is that relating to
the opening of extra checkouts. The rule starts by saying that these should be
considered if the number of customers queuing or shopping has increased. If this is
the case, then an additional fast checkout can be opened if the average queue length
is too long at fast lanes. Similarly, one or more additional standard checkouts is to
open if the wait time is too long. Naturally, this breaks down into separate cases
handled by separate functions. The ConsiderExtraCheckouts() function
establishes the context for adding checkouts:

void Manager::ConsiderExtraCheckouts()
{

long shopping = fs->fCustomersPresent -
fs->fCustomersQueuing;

long queuing = fs->fCustomersQueuing;

if((shopping>fShoppingLast) || (queuing > fQueuingLast)) {
CheckQueuesAtFastCheckouts();
CheckTimesAtStandardCheckouts();
}

fShoppingLast = shopping;
fQueuingLast = queuing;

}

The function that adds fast checkouts is representative of the remaining
functions. If identifies circumstances that preclude the opening of new checkouts
(e.g. maximum number already open) and if any pertain it abandons processing:

void Manager::CheckQueuesAtFastCheckouts()
{

/*
if there are any idle checkouts do nothing.
*/

int idle = fs->fFastIdle.Length() +
fs->fStandardIdle.Length();

if(idle != 0)
return;

/*
If don't have any fast checkouts open, can't check

If getting busier, add
more checkouts

998 Supermarket example

average length so do nothing. (If number of customers
is large, a fast checkout will have been created by
the minimum checkouts rule.)
*/

int num = fs->fFastWorking.Length();
if(num == 0)

return;

int total = num + fs->fStandardWorking.Length();

if(total == fmaxcheckouts)
return;

The next step involves iterating through existing working checkouts gathering
information needed to determine current load. Naturally, this is done with the aid
of a ListIterator:

int queuing = 0;
ListIterator L1(&(fs->fFastWorking));
L1.First();
while(!L1.IsDone()) {

Checkout *c = (Checkout*) L1.CurrentItem();
queuing += c->QueueLength();
L1.Next();
}

int average = queuing / num;

If the average queue length is too great, an extra checkout should be added:

if(average < fqlen)
return;

fs->AddCheckout(kFAST);
cout << "Added a fast checkout." << endl;

}

Execution

You should find it fairly simple to complete the implementation (Exercise 1). The
program should produce outputs like the following:

Time 8:30a.m.
Number of customers 65
Fast Checkouts:
*|***********************
Standard Checkouts:
*|********************
Added a fast checkout.
Added 1 standard checkouts.

Time 8:40a.m.
Number of customers 84

Fast Checkouts:
*|******************
*|************
Standard Checkouts:
*|*********
*|**************
Time 9:30a.m.
Number of customers 34
There are 2 idle fast
checkouts.
Fast Checkouts:

Organizing the Checkouts 999

*|
Standard Checkouts:
*|***
*|**

Closed 2 fast checkouts

Time 7:00p.m.
Number of customers 15
There are 2 idle fast
checkouts.
There are 10 idle standard
checkouts.
Standard Checkouts:
*|
*|
*|
*|
*|
*|
*|
*|
Door closed.

…
…
Time 7:30p.m.
Number of customers 1
Standard Checkouts:
*
Time 7:35p.m.
Number of customers 0
There are 1 idle standard
checkouts.

Shop closing at 7:35p.m.
Checkout times:
Total 8720 minutes
Idle 834 minutes

Shopping times

Number of samples 2627
Average = 14.5778
Standard deviation = 16.9764
Minimum value = 2
Maximum value = 180
[0 :16] : 1862
[16 :32] : 462
[32 :48] : 179
[48 :64] : 67
[64 :80] : 28
[80 :96] : 14
[96 :112] : 7
[112 :128] : 1
[128 :144] : 3
[144 :160] : 1

[160 :176] : 2
[176 :192] : 1

Queuing times

Number of samples 2627
Average = 3.24705
Standard deviation = 3.69674
Minimum value = 0
Maximum value = 23
[0 :2] : 1170
[2 :4] : 509
[4 :6] : 314
[6 :8] : 255
[8 :10] : 208
[10 :12] : 84
[12 :14] : 37
[14 :16] : 26
[16 :18] : 12
[18 :20] : 7
[20 :22] : 3
[22 :24] : 2

EXERCISES

1 Complete a working version of the Supermarket program.

2 Implement a simulation of an "office information system".

1000 Supermarket example

The system has a number of sources of "messages" – electronic mail, a facsimile
machine, a local network, etc. The different kinds of incoming messages are all placed
in a single queue for processing by the executive using the system. The user can get
details of the queue displayed; these details will include the number of queued messages,
and a list showing the headers for each message. These header details are to include
"arrival time", "sender", and "topic" (each of these is a short string). The user can select
messages (identifying them by an index number) for detailed display.
Once selected, a message becomes the "current message". The system is to allow the
user to display the content of the current message, requeue it, save it to file or delete it.
Different message types display their content in distinct ways.

The message sources should work with data files. These text files will contain
successive messages. Each message in the file starts with an "arrival time", a "sender"
name, and "topic header". The content part of the message will follow; different content
forms should be used for the different message types. The simulation will give message
sources an opportunity to "run" at regular intervals. When a message source runs, it
should read successive messages from its input file, creating appropriate message objects
that get added to the main queue. Data should continue to be read, and message objects
be created, until the next "arrival time" is greater than the current simulated system time.

The system is to have a simulated time scale based on actual execution time (use the
functions provided in your IDE for accessing the clock). For example, six seconds of
execution time could represent one minute of simulated time.

The simulation will involve a loop in which the user is prompted for a command. The
program will pause until data is entered. The computer's clock is read after the user
input and used to update the simulated time. All message sources are given the
opportunity to "run", possibly resulting in additional messages being added to the main
queue. Then the users command should be interpreted. Finally, the "simulated time"
should be displayed and the user should be prompted for the next command.

